41 research outputs found

    Balancing Long Lifetime and Satisfying Fairness in WBAN Using a Constrained Markov Decision Process

    Get PDF
    As an important part of the Internet of Things (IOT) and the special case of device-to-device (D2D) communication, wireless body area network (WBAN) gradually becomes the focus of attention. Since WBAN is a body-centered network, the energy of sensor nodes is strictly restrained since they are supplied by battery with limited power. In each data collection, only one sensor node is scheduled to transmit its measurements directly to the access point (AP) through the fading channel. We formulate the problem of dynamically choosing which sensor should communicate with the AP to maximize network lifetime under the constraint of fairness as a constrained markov decision process (CMDP). The optimal lifetime and optimal policy are obtained by Bellman equation in dynamic programming. The proposed algorithm defines the limiting performance in WBAN lifetime under different degrees of fairness constraints. Due to the defect of large implementation overhead in acquiring global channel state information (CSI), we put forward a distributed scheduling algorithm that adopts local CSI, which saves the network overhead and simplifies the algorithm. It was demonstrated via simulation that this scheduling algorithm can allocate time slot reasonably under different channel conditions to balance the performances of network lifetime and fairness

    In search of strategic assets through cross-border merger and acquisitions: evidence from Chinese multinational enterprises in developed economies

    Get PDF
    Drawing on multiple cases of cross-border merger and acquisitions (CBMAs) by Chinese multinational enterprises (CMNEs), we investigate their search of strategic assets in developed economies (DEs). It is a received view that CMNEs use CBMAs to access strategic assets in DEs so as to address their latecomer disadvantages and competitive weakness. This paper aims to identify the nature of strategic assets that sought after by CMNEs and the post-CBMA integration approach, a partnering approach, adopted in enabling access to these assets. The findings reveal that CMNEs possess firm-specific assets that give them competitive advantages at home and seek for complementary strategic assets in the similar domain, but at a more advanced level. The partnering approach helps securing these strategic assets through no or limited integration, giving autonomy to target firm management team, retaining talents and creating synergy

    Clinical Characteristics of Inpatients With New-Onset Diabetes Mellitus in Eastern China: Based on Novel Clustering Analysis

    Get PDF
    IntroductionThis study aimed to explore the novel classification of inpatients with new-onset diabetes in Eastern China by the cluster-based classification method and compare the clinical characteristics among the different subgroups.MethodsA total of 1017 Inpatients with new-onset diabetes of five hospitals in Eastern China were included in the study. Clustering analysis was used to cluster the data into five subgroups according to six basic variables. The differences in clinical characteristics, treatments, and the prevalence of diabetes-related diseases among the five subgroups were analyzed by multiple groups comparisons and pairwise comparisons. The risk of diabetes-related diseases in the five subgroups was compared by calculating odd ratio (OR). P value < 0.05 was considered significant.ResultsFive subgroups were obtained by clustering analysis with the highest proportion of patients with severe insulin-deficient diabetes (SIDD) 451 (44.35%), followed by patients with mild age-related diabetes (MARD) 236 (23.21%), patients with mild obesity-related diabetes (MOD) 207 (20.35%), patients with severe insulin-resistant diabetes (SIRD) 81 (7.96%), and patients with severe autoimmune diabetes (SAID) 42 (4.13%). Five subtypes had their own unique characteristics and treatments. The prevalence and risk of diabetes-related complications and comorbidities were also significantly different among the five subtypes. Diabetic kidney disease (DKD) was the most common in SIRD group. Patients in SIDD, SIRD, and MARD groups were more likely to develop cardiovascular disease (CVD) and/or stroke, diabetic peripheral vascular disease (DPVD), and diabetic distal symmetric polyneuropathy (DSPN). The prevalence and risk of metabolic syndrome (MS) were the highest in MOD and SIRD groups. Patients in SAID group had the highest prevalence and risk of diabetic ketoacidosis (DKA). Patients with MOD were more likely to develop non-alcoholic fatty liver disease (NAFLD).ConclusionsThe inpatients with new-onset diabetes in Eastern China had the unique clustering distribution. The clinical characteristics, treatments, and diabetes-related complications and comorbidities of the five subgroups were different, which may provide the basis for precise treatments of diabetes

    Increased recruitment of endogenous stem cells and chondrogenic differentiation by a composite scaffold containing bone marrow homing peptide for cartilage regeneration

    Get PDF
    Even small cartilage defects could finally degenerate to osteoarthritis if left untreated, owing to the poor self-healing ability of articular cartilage. Stem cell transplantation has been well implemented as a common approach in cartilage tissue engineering but has technical complexity and safety concerns. The stem cell homing-based technique emerged as an alternative promising therapy for cartilage repair to overcome traditional limitations. In this study, we constructed a composite hydrogel scaffold by combining an oriented acellular cartilage matrix (ACM) with a bone marrow homing peptide (BMHP)-functionalized self-assembling peptide (SAP). We hypothesized that increased recruitment of endogenous stem cells by the composite scaffold could enhance cartilage regeneration. Methods: To test our hypothesis, in vitro proliferation, attachment and chondrogenic differentiation of rabbit mesenchymal stem cells (MSCs) were tested to confirm the bioactivities of the functionalized peptide hydrogel. The composite scaffold was then implanted into full-thickness cartilage defects on rabbit knee joints for cartilage repair, in comparison with microfracture or other sample groups. Stem cell recruitment was monitored by dual labeling with CD29 and CD90 under confocal microcopy at 1 week after implantation, followed by chondrogenic differentiation examined by qRT-PCR. Repaired tissue of the cartilage defects was evaluated by histological and immunohistochemistry staining, microcomputed tomography (micro-CT) and magnetic resonance imaging (MRI) at 3 and 6 months post-surgery. Macroscopic and histological scoring was done to evaluate the optimal in vivo repair outcomes of this composite scaffold. Results: The functionalized SAP hydrogels could stimulate rabbit MSC proliferation, attachment and chondrogenic differentiation during in vitro culture. At 7 days after implantation, increased recruitment of MSCs based on CD29(+)/CD90(+) double-positive cells was found in vivo in the composite hydrogel scaffold, as well as upregulation of cartilage-associated genes (aggrecan, Sox9 and type II collagen). After 3 and 6 months post-surgery, the articular cartilage defect in the composite scaffold-treated group was fully covered with cartilage-like tissue with a smooth surface, which was similar to the surrounding native cartilage, according to the results of histological and immunohistochemistry staining, micro-CT and MRI analysis. Macroscopic and histological scoring confirmed that the quality of cartilage repair was significantly improved with implantation of the composite scaffold at each timepoint, in comparison with microfracture or other sample groups. Conclusion: Our findings demonstrated that the composite scaffold could enhance endogenous stem cell homing and chondrogenic differentiation and significantly improve the therapeutic outcome of chondral defects. The present study provides a promising approach for in vivo cartilage repair without cell transplantation. Optimization of this strategy may offer great potential and benefits for clinical application in the future

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    A New Synthetic Ursolic Acid Derivative IUA with Anti-Tumor Efficacy Against Osteosarcoma Cells via Inhibition of JNK Signaling Pathway

    No full text
    Background: Osteosarcoma is the most common primary malignant bone tumor in children and adolescents and is characterized by frequent metastasis and resistance to chemotherapy. Because osteosarcoma cells are not highly susceptible to current chemotherapy drugs, new alternative strategies for the treatment of osteosarcoma are needed. This study was undertaken to investigate the inhibitory effects of a new synthetic ursolic acid derivative IUA on osteosarcoma cells and to explore its molecular mechanism. We also intended to identify new therapeutic candidates. Methods: We used MTT assay to assess the effect of IUA on the proliferation of osteosarcoma cells. Western-blot analysis was performed to examine downstream molecular events. The Annexin V method was used to evaluate the effect of IUA on apoptosis of osteosarcoma cells. The cell cycle of IUA-treated cells was examined by flow cytometry, and the in vivo effects of this new ursolic acid derivative were evaluated in a mouse osteosarcoma model. Results: The results showed that the new synthetic ursolic acid derivative IUA significantly decreased viability of osteosarcoma cells in vitro and in vivo. It could also induce apoptosis and G1 phase arrest of osteosarcoma cells. The JNK signaling pathway was significantly inhibited, and cleaved caspase-3 protein was increased. Conclusion: We concluded that the new synthetic ursolic acid derivative IUA induces proliferation inhibition and apoptosis of osteosarcoma cells in vitro and in vivo via the down-regulation of the JNK signaling pathway, making it a promising agent for the prevention and treatment of human osteosarcoma

    Hematoporphyrin monomethyl ether-mediated photodynamic therapy selectively kills sarcomas by inducing apoptosis.

    Get PDF
    We investigated the antitumor effect and mechanism of hematoporphyrin monomethyl ether-mediated photodynamic therapy (HMME-PDT) in sarcomas. Intracellular uptake of HMME by osteosarcoma cells (LM8 and K7) was time- and dose-dependent, while this was not observed for myoblast cells (C2C12) and fibroblast cells (NIH/3T3). HMME-PDT markedly inhibited the proliferation of sarcoma cell lines (LM8, MG63, Saos-2, SW1353, TC71, and RD) (P<0.05), and the killing effect was improved with increased HMME concentration and energy intensity. Flow cytometry analysis revealed that LM8, MG63, and Saos-2 cells underwent apoptosis after treatment with HMME-PDT. Additionally, apoptosis was induced after HMME-PDT in a three-dimensional culture of osteosarcoma cells. Hoechst 33342 staining confirmed apoptosis. Cell death caused by PDT was rescued by an irreversible inhibitor (Z-VAD-FMK) of caspase. However, cell viability was not markedly decreased compared with the HMME-PDT group. Expression levels of caspase-1, caspase-3, caspase-6, caspase-9, and poly (ADP-ribose) polymerase (PARP) proteins were markedly up-regulated in the treatment groups and increased with HMME concentration as determined by western blot analysis. In vivo, tumor volume markedly decreased at 7-16 days post-PDT. Hematoxylin and eosin staining revealed widespread necrotic and infiltrative inflammatory cells in the HMME-PDT group. Immunohistochemistry analysis also showed that caspase-1, caspase-3, caspase-6, caspase-9, and PARP proteins were significantly increased in the HMME-PDT group. These results indicate that HMME-PDT has a potent killing effect on osteosarcoma cells in vitro and significantly inhibits tumor growth in vivo, which is associated with the caspase-dependent pathway

    Transcranial Doppler combined with quantitative EEG brain function monitoring and outcome prediction in patients with severe acute intracerebral hemorrhage

    No full text
    Abstract Background Neurological deterioration after intracerebral hemorrhage (ICH) is thought to be closely related to increased intracranial pressure (ICP), decreased cerebral blood flow (CBF), and brain metabolism. Transcranial Doppler (TCD) is increasingly used as an indirect measure of ICP, and quantitative EEG (QEEG) can reflect the coupling of CBF and metabolism. We aimed to combine TCD and QEEG to comprehensively assess brain function after ICH and provide prognostic diagnosis. Methods We prospectively enrolled patients with severe acute supratentorial (SAS)-ICH from June 2015 to December 2016. Mortality was assessed at 90-day follow-up. We collected demographic data, serological data, and clinical factors, and performed neurophysiological tests at study entry. Quantitative brain function monitoring was performed using a TCD-QEEG recording system at the patient’s bedside (NSD-8100; Delica, China). Univariate and multivariable analyses and receiver operating characteristic (ROC) curves were employed to assess the relationships between variables and outcome. Results Forty-seven patients (67.3 ± 12.6 years; 23 men) were studied. Mortality at 90 days was 55.3%. Statistical results showed there were no significant differences in brain symmetry index between survivors and nonsurvivors, nor between patients and controls (all p > 0.05). Only TCD indicators of the pulsatility index from unaffected hemispheres (UPI) (OR 2.373, CI 1.299–4.335, p = 0.005) and QEEG indicators of the delta/alpha ratio (DAR) (OR 5.306, CI 1.533–18.360, p = 0.008) were independent predictors for clinical outcome. The area under the ROC curve after the combination of UPI and DAR was 0.949, which showed better predictive accuracy compared to individual variables. Conclusions In patients with SAS-ICH, multimodal neuromonitoring with TCD combined with QEEG indicated that brain damage caused diffuse changes, and the predictive accuracy after combined use of TCD-QEEG was statistically superior in performance to any single variable, whether clinical or neurophysiological
    corecore